
162

INTRODUCTION

Software development relies on an important 
practice known as code review, which enhances 
the quality of code and encourages the exchange of 
knowledge among team members. Nevertheless, for 
large-scale projects, the volume of pull requests can 
be overwhelming, and it becomes cost-ineffective 
[1] for maintainers to manually designate suitable 
reviewers for each request. This is where different 
techniques for recommending code review come 
into play. The primary focus of research is to em-
ploy various methods, including machine learning 
[1–3], Heuristic-based algorithms [4, 5], and social 

network analysis [6], to suggest reviewers for pull 
requests in projects automatically. The objective is 
to improve code review efficiency by identifying 
qualified reviewers with the necessary expertise 
and experience to examine the modifications sug-
gested in a pull request thoroughly. Recommending 
the right persons to code review can significantly 
improve the efficiency of the code review process. 
Automatically suggesting reviewers based on vari-
ous factors such as historical bugs, code changes, 
collaborator social network and pull request topics 
can help to ensure that the pull requests are reviewed 
by the most suitable reviewers, which can ultimately 
lead to fewer bugs and higher-quality code [1, 5].

Enhancing Code Review Efficiency – Automated Pull Request 
Evaluation Using Natural Language Processing and Machine 
Learning

Przemysław Wincenty Zydroń1*, Jarosław Protasiewicz1

1 National Information Processing Institute, al. Niepodległości 188 b, 00-608 Warszawa, Poland 
* Corresponding author’s e-mail: przemyslaw.zydron@opi.org.pl

ABSTRACT
The practice of code review is crucial in software development to improve code quality and promote knowledge 
exchange among team members. It requires identifying qualified reviewers with the necessary expertise and 
experience to thoroughly examine modifications suggested in a pull request and improve the efficiency of the 
code review process. However, it can be costly and time-consuming for maintainers to manually assign suitable 
reviewers to each request for large-scale projects. To address this challenge, various techniques, including ma-
chine learning, heuristic-based algorithms, and social network analysis, have been employed to suggest reviewers 
for pull requests automatically. The primary challenge for recommending reviewers of pull requests is verifying 
whether the review is accurate. While there have been attempts to replicate previous recommendation processes or 
propose new methods, evaluating the correctness of reviews remains a crucial area of research. New approaches 
are emerging to assess the correctness of reviews, but further research is needed to develop more reliable methods 
that can be applied in various contexts. This study investigates whether an automated evaluation of review ac-
curacy and its impact on software quality is possible. One possible approach is to use a pre-trained language 
model like ChatGPT3 to extract key information from the review text. Another method is to use NLP techniques 
to automatically generate annotations from the review text, which could then be used to train a machine learning 
model to predict review quality accurately. Automated pull request evaluation mechanisms have the potential to 
positively impact both open source and industry projects by increasing transparency and accountability in the code 
review process and improving overall project outcomes. Therefore, developing and implementing effective auto-
mated pull request evaluation systems are crucial research areas with significant potential benefits.

Keywords: machine learning, software development, code quality, code review, pull request.

Received: 2023.06.30
Accepted: 2023.07.13
Published: 2023.08.15

Advances in Science and Technology Research Journal 2023, 17(4), 162–167
https://doi.org/10.12913/22998624/169576
ISSN 2299-8624, License CC-BY 4.0

Advances in Science and Technology 
Research Journal



163

Advances in Science and Technology Research Journal 2023, 17(4), 162–167

In recent years, the area of reviewer recom-
mendation in code review processes has received 
signifi- cant attention due to its potential to en-
hance the efficiency and accuracy of the code 
review process. Code review is a crucial aspect 
of the development process as it guarantees the 
quality of the code being produced. Reviewer rec-
ommendation involves automatically suggesting 
the most appropriate reviewers for a given pull 
request [7]. A common issue in recommendation 
methods based on previous work is the cold start 
problem, which arises when making recommen-
dations for new developers or pull requests with 
little or no previous work history. This is because 
the recommendation system depends heavily on 
past performance to make suggestions, making it 
difficult for the system to make accurate or rele-
vant recommendations for new developers or pull 
requests with little to no information [8].

One of the limitations that are often encoun-
tered when using probabilistic methods based on 
previous data is the lack of access to proprietary 
data from companies. Most studies in this area rely 
on open-source projects, which may not represent 
the code review processes used in the industry. 
The effectiveness of the methods developed using 
open-source projects may not necessarily trans-
late to industry scenarios where different coding 
standards and review processes are used. The lack 
of access to proprietary data also limits the gen-
eralizability of the results obtained from open-
source projects. This limitation can lead to biases 
in the results obtained, affecting the accuracy of 
the recommendation [9–11]. Therefore, it is es-
sential to acknowledge the limitations of previous 
studies and consider the context in which the code 
review process takes place. Future studies should 
address these limitations and develop more robust 
methods that can be applied in various contexts, 
including those in industry settings. This can be 
achieved by collaborating with companies to gain 
access to proprietary data or by conducting ex-
periments that mimic the conditions of industry 
code review processes.

Core-reviewer recommendation based on the 
Pull Request topic model and collaborator social 
network is a topic that has gained significant at-
tention in recent years. The goal of this approach 
is to improve the efficiency and accuracy of the 
code review process by recommending the most 
suitable reviewers for a given pull request. While 
many studies have focused on developing new 
methods for recommending reviewers, few have 

analyzed the effectiveness of the review process 
itself and the impact of reviewer expertise on 
the quality of code being produced. One of the 
methods for evaluating the correctness of code 
reviews is not taking into account reopened pull 
requests in the evaluation of reviewers [12]. The 
authors of the study proposed a systematic label-
ling bias detection technique, which involves 
analyzing the history of pull requests to identify 
and exclude those that were reopened due to is-
sues with the initial review. By doing so, they 
were able to improve the accuracy of the re-
viewer recommendation system by reducing the 
impact of potentially biased evaluations. By ana-
lyzing the review process and the quality of the 
code being produced, it may be possible to iden-
tify patterns and best practices that can be used 
to improve the efficiency and effectiveness of the 
code review process [13]. Additionally, by taking 
into account the expertise of the reviewer, it may 
be possible to better match reviewers with the 
code being reviewed, leading to more accurate 
and thorough reviews. To achieve these goals, it 
may be necessary to develop new methods and 
tools for analyzing the review process and the 
expertise of reviewers. This may include using 
machine learning and natural language process-
ing techniques to identify patterns and common 
issues in code reviews, as well as developing 
new metrics for measuring the effectiveness of 
the review process. This study scrutinizes the lit-
erature on this subject and formulates the idea of 
such a system for recommending code reviewers. 
Knights of the ZodiacKnights of the Zodiaczod 
In this chapter, we thoroughly examine the cur-
rent state of recommending reviewers for pull 
requests, specifically emphasising various ap-
proaches and the most notable and cutting-edge 
references for these methods. We comprehen-
sively review each approach, thoroughly discuss-
ing its strengths and limitations. We will com-
mence with the most widely referenced methods 
that serve as a benchmark [14] for other studies, 
including RevFinder [15], which leverages file 
paths for reviewer recommendation, TIE and 
IR (VSM-based) [16], which consider commit-
ting messages and file paths similarity, and CN 
[6], which ranks reviewers based on common 
interests with contributors by mining historical 
comments and constructing a comment network. 
We also consider the activity and workload of re-
viewers, as addressed in cHRev [10] and other 
relevant studies.



164

Advances in Science and Technology Research Journal 2023, 17(4), 162–167

RevFinder [15] is an approach that utilizes 
file paths for recommending reviewers for pull re-
quests. The approach involves extracting file paths 
from the changes made in a pull request and mea-
suring the similarity between these file paths and 
the files that potential reviewers have previously 
reviewed. The authors of RevFinder proposed 
a method that calculates the similarity between 
file paths using the Jaccard similarity coefficient, 
which measures the similarity between two sets. 
The authors evaluated their approach on a large 
dataset from GitHub and compared it with other 
existing approaches, showing that RevFinder out-
performed them in terms of accuracy and recall.

TIE [16] is another approach that combines 
commit message and file path similarity for re-
com- mending reviewers for pull requests. The 
approach takes into account not only the file 
paths but also the commit messages associated 
with the changes made in a pull request. The 
authors of TIE proposed a method that calcu-
lates the similarity between commit messages 
and file paths using the cosine similarity, which 
measures the cosine of the angle between two 
vectors. The authors conducted experiments on a 
large dataset from GitHub and demonstrated that 
TIE achieved higher accuracy and recall com-
pared to other methods.

IR (VSM-based) [6] is an approach that vec-
torizes the pull request description for recom-
mending reviewers. The approach involves rep-
resenting the textual description of a pull request 
as a vector using the Vector Space Model (VSM), 
which is a common technique in information re-
trieval. The IR (VSM-based) authors proposed a 
method that calculates the similarity between the 
vector represen- tation of the pull request descrip-
tion and the reviewing history of potential re-
viewers. The authors evaluated their approach on 
a dataset from GitHub and showed that IR (VSM-
based) outperformed other methods in terms of 
accuracy and F1 score.

In addition to these approaches, there are 
other relevant publications in the field of review-
er rec- ommendations for pull requests. For ex-
ample, Comment Network (CN) [tsai2014using] 
constructs a network of comments to recommend 
reviewers based on common interests with con-
tributors. cHRev [10] considers reviewing his-
tory, expertise measurement, and other factors 
to provide reviewer rec- ommendations. These 
and other approaches contribute to the ongoing 
research on effective reviewer recommendations 

for pull requests in software development. In ad-
dition to these basic solutions, which serve as a 
reference for other researchers, it is worth men-
tioning a method called WhoReview [17] multi-
objective search-based approach. The method 
involves formulating the rec- ommendation prob-
lem as a multi-objective optimization problem 
and using evolutionary algorithms to search for 
the best set of reviewers. The authors consider 
multiple criteria, such as expertise, availability, 
and collaboration history, to recommend review-
ers most suitable for a code review task.

Another multi-objective method [18] in-
volves considering the reviewers’ workload, such 
as their current review load or availability, and 
formulating the recommendation problem as a 
multi-objective optimization problem that con-
siders both expertise and workload. Evolution-
ary algorithms, such as NSGA-II and MOEA/D, 
are used to search for reviewers who can handle 
the review load effectively while providing high-
quality reviews based on their expertise.

In the RSTrace+ [19] approach, for suggest-
ing reviewers in code review using software ar-
tefact traceability graphs, the method involves 
constructing a graph representation of the soft-
ware artefacts, such as source code files, bug re-
ports, and change logs, and analyzing the graph 
to identify potential reviewers based on their in-
teractions with these artefacts. The authors utilize 
graph-based algorithms, such as PageRank and 
HITS, to rank the reviewers and suggest the top-
ranked reviewers for a code review task.

A different method is a recommendation with 
consideration response time constraints [20]. 
The method involves considering the response 
time requirements of code review tasks, such as 
deadlines or service level agreements, and incor-
porating them into the reviewer recommenda-
tion process. The au- thors use techniques such 
as time-aware collaborative filtering and time-
based heuristics to recommend reviewers who are 
likely to provide timely reviews based on their 
past review history and availability. In addition to 
methods for recommending reviewers, there are 
also techniques to enhance the accu- racy of these 
recommendation methods, e.g.a method for de-
tecting and eliminating systematic labelling bias 
[21] in code reviewer recommendation systems. 
This method analyses reviewer assignment data 
and identifies potential biases in the labels repre-
senting reviewer expertise or availability. Statis-
tical techniques, such as logistic regression and 



165

Advances in Science and Technology Research Journal 2023, 17(4), 162–167

Bayesian modeling, are employed to identify and 
correct these biases, thereby improving the fair-
ness and accuracy of the reviewer recommenda-
tion system. An- other way to improve the quality 
of recommendations is to use Various data clean-
ing techniques [22], such as data validation, er-
ror detection, and outlier removal, are utilized to 
enhance the quality and reliability of the ground 
truth data used in software task assignment.

THE IDEA OF A CODE REVIEW 
RATING SYSTEM

Various attributes have been analyzed in the 
literature to improve the accuracy of reviewer 
recommen- dations. These attributes include de-
veloper expertise, code changes, vocabulary, so-
cial connections and interactions, and the time of 
bug assignments. Reviewer expertise is a vital 
factor to consider as it ensures that the code be-
ing reviewed is thoroughly examined. The code 
changes in a pull request can also be analyzed 
to recommend the most suitable reviewers, as 
they can provide valuable insights and feedback 
based on their expertise in the areas of code be-
ing modified. Vocabulary and time of bug assign-
ments have also been studied as factors that can 
help determine which developers have the most 
experience with the specific code being reviewed. 
Additionally, pull request topics and the social 
networks of collaborators are essential factors to 
consider [23]. Pull request topics can be analyzed 
using topic models to recommend reviewers who 
possess expertise in the same area. Social networks 
of collaborators can also be analyzed to recom-
mend reviewers who have worked with the same 
developers in the past or share common interests.

It has been discovered that the best outcomes 
are achieved by combining two or more metrics 
to recommend reviewers [6]. For instance, a com-
bination of social connections and code changes 
has been shown to be effective in improving the ac-
curacy of reviewer recommendations. Social net-
work analysis helps identify potential reviewers 
who have previously worked with the developer. 
In contrast, code change analysis helps identify 
reviewers with expertise in modifying the code. 
Therefore, a combina- tion of multiple metrics 
should be considered to attain the best results in the 
reviewer recommendation process. However, it 
has been demonstrated that adding a third or sub-
sequent metric does not neces- sarily improve the 

accuracy of reviewer recommendations and can 
even worsen it by introducing noise and redundan-
cy [6]. Therefore, selecting complementary rather 
than redundant metrics is essential for improving 
reviewer recommendations.

Based on the analysis of available articles and 
the current state of the art, we have concluded that 
the main challenge for recommending reviewers 
of pull requests is verifying whether the review 
is accurate. There have been attempts to replicate 
previous recommendation processes or propose 
new methods, but what is lacking is the analy-
sis of whether a review was done correctly and 
whether a reviewer, armed with the knowledge of 
the correctness of their review, “the best reviewer 
is the person who will be able to give you the most 
thorough and correct review for the piece of code 
you are writing” [13].

New methods are emerging for evaluating the 
correctness of reviews, which involve ignoring 
re- opened tasks [12]. However, these methods do 
not directly impact the improvement of reviews. 
Fur- ther research is required to develop more 
reliable strategies that can be applied in various 
contexts. It seems likely that based on appropriate 
annotated reviews, an evaluation mechanism for 
the quality of reviews could be created using NLP 
techniques. Such a mechanism would ensure that 
reviews are of high quality.

One possible approach to automatic review 
annotation using NLP is using a pre-trained lan-
guage model such as ChatGPT4 to extract es-
sential information from the review text. It could 
include identifying the specific areas of code that 
were reviewed, the types of issues identified, and 
the severity of those issues. Combining this in-
formation with annotations from human review-
ers, it may be possible to train a machine-learning 
model to predict a review’s quality accurately. 
Figure 1 depicts the initial idea of such a system.

For the first step, we will develop a code review 
annotation mechanism that can determine the cor-
rectness of code reviews. We will gather data from 
open-source projects and data collected from our 
institute. Our employees’ expert knowledge will be 
utilized to annotate reviews of pull requests. In this 
phase, we will also examine the viability of per-
forming automatic annotations using pre-existing 
trained models such as ChatGPT4 [24], without 
human intervention. We aim to investigate whether 
providing code reviewers with real-time feedback 
about the correctness of their reviews can improve 
the software development process.



166

Advances in Science and Technology Research Journal 2023, 17(4), 162–167

In the second step, we aim to investigate the 
feasibility of training a model that can automati-
cally review pull requests using a multi-agent ar-
chitecture [25, 26], which is based on cooperation 
between multiple instances-agents of ChatGPT4 
[27]. The first agent will be responsible for review-
ing the code, while the second agent will utilize 
an annotation mechanism to assess the correct-
ness of the review. Our objective is to examine 
whether such an approach can improve the effi-
ciency and accuracy of the code review process. 
In this step, we will check the impact of the pro-
grammer’s review on the pull request before its 
submission and assess its potential effect on the 
software development process.

Automated pull request evaluation mecha-
nisms have the potential to positively impact the 
com- pletion of both open-source and industry 
projects. The use of such mechanisms can also 
increase transparency and accountability in the 
code review process, leading to greater trust be-
tween col- laborators and improving overall proj-
ect outcomes. As such, developing and imple-
menting effective automated pull request evalua-
tion systems is an important area of research with 
significant potential benefits.

CONCLUSION

This article has identified the primary chal-
lenges of recommending reviewers for pull re-
quests as verifying the accuracy of the review. 
Despite previous attempts to propose new meth-
ods or replicate previous recommendation pro-
cesses, more research is needed to develop reli-
able ways to improve reviews’ quality. However, 
new evaluation methods are emerging, and with 

appropriate annotated reviews, it is possible to 
create a quality evaluation mechanism using NLP 
techniques. The proposed approach of automat-
ic review annotation using pre-trained language 
models such as ChatGPT4 could potentially im-
prove the efficiency and accuracy of the code 
review process. The two-step process of devel-
oping a code review annotation mechanism and 
training a model using a multi-agent architecture 
has been proposed. Further research is required to 
explore its feasibility and impact on the software 
development process.

REFERENCES

1. Lipcak, J., Rossi, B. A large-scale study on source 
code reviewer recommendation in 2018 44th Eu-
romicro Conference on Software Engineering and 
Advanced Applications (SEAA), Czech Republic. 
2018, 378– 387.

2. Kim, J., Lee, E. Understanding review expertise of 
developers: A reviewer recommendation approach 
based on latent dirichlet allocation. Symmetry. 
2018; 10: 114 

3. Ye, X. Learning to rank reviewers for pull requests. 
IEEE Access. 2019; 7: 85382–85391.

4. Wang, Y., Wang, X., Jiang, Y., Liang, Y., Liu, Y. A 
code reviewer assignment model incor- porating the 
competence differences and participant preferences. 
Foundations of Computing and Decision Sciences. 
2016; 41: 77–91.

5. Liao, Z. et al. TIRR: A code reviewer recommenda-
tion algorithm with topic model and reviewer influ-
ence in 2019 IEEE Global Communications Con-
ference (GLOBECOM), United States. 2019; 1–6.

6. Yu, Y., Wang, H., Yin, G. & Wang, T. Reviewer rec-
ommendation for pull-requests in GitHub: What can 
we learn from code review and bug assignment? 

Figure 1. Agent collaboration diagram showing the idea of a code review rating system



167

Advances in Science and Technology Research Journal 2023, 17(4), 162–167

Information and Software Technology. 2016; 74: 
204–218.

7. Chen, Q. et al. Code reviewer recommendation in 
tencent: practice, challenge, and direction in Pro-
ceedings of the 44th International Conference on 
Software Engineering: Software Engineering in 
Practice United States. 2022; 115–124.

8. Sajedi-Badashian, A., Stroulia, E. Vocabulary and 
time based bug-assignment: A recommender system 
for open-source projects. Software: Practice and Ex-
perience 2020; 50, 1539–1564.

9. Ye, X., Zheng, Y., Aljedaani, W., Mkaouer, M. W. 
Recommending pull request reviewers based on code 
changes. Soft Computing. 2021; 25: 5619–5632.

10. Zanjani, M.B., Kagdi, H., Bird, C. Automatically 
recommending peer reviewers in modern code re-
view. IEEE Transactions on Software Engineering. 
2015; 42: 530–543.

11. Kovalenko, V., Tintarev, N., Pasynkov, E., Bird, C., 
Bacchelli, A. Does reviewer recommenda- tion help 
developers? IEEE Transactions on Software Engi-
neering. 2018; 46, 710–731.

12. Tecimer, K.A., Tu¨zu¨n, E., Dibeklioglu, H., Erdog-
mus, H. in Evaluation and Assessment in Software 
Engineering. 2021; 181–190.

13. Google. Code Review Developer Guid, https://
google.github.io/eng-practices/review/

14. Hu, Y., Wang, J., Hou, J., Li, S., Wang, Q. Is There 
A” Golden” Rule for Code Reviewer Recommenda-
tion?:—An Experimental Evaluation in 2020 IEEE 
20th International Conference on Software Quality, 
Reliability and Security (QRS) 2020; 497–508.

15. Thongtanunam, P. et al. Who should review my 
code? a file location-based code-reviewer recom- 
mendation approach for modern code review in 
2015 IEEE 22nd International Conference on 
Software Analysis, Evolution, and Reengineering 
(SANER) United States. 2015; 141–150.

16. Xia, X., Lo, D., Wang, X., Yang, X. Who should 
review this change?: Putting text and file location 
analyses together for more accurate recommen-
dations in 2015 IEEE international conference 

on software maintenance and evolution (ICSME) 
United States 2015; 261–270.

17. Chouchen, M., Ouni, A., Mkaouer, M. W., Kula, 
R. G. & Inoue, K. WhoReview: A multi-objective 
search-based approach for code reviewers recom-
mendation in modern code review. Applied Soft 
Computing. 2021; 100: 106908 2021.

18. Al-Zubaidi, W.H.A., Thongtanunam, P., Dam, H.K., 
Tantithamthavorn, C., Ghose, A. Workload-aware 
reviewer recommendation using a multi-objective 
search-based approach in Pro- ceedings of the 
16th ACM International Conference on Predictive 
Models and Data Analytics in Software Engineering 
2020; 21–30.

19. Sülün, E., Tüzün, E., Dŏgrusöz, U. Rstrace+: Re-
viewer suggestion using software artifact traceabil-
ity graphs. Information and Software Technology 
2021; 130: 106455.

20. Hu, Y., Wang, J., Li, S., Hu, J., Wang, Q. Response 
Time Constrained Code Reviewer Recom- menda-
tion. Journal of Software. 2020; 32: 3372–3387.

21. Badampudi, D., Unterkalmsteiner, M., Britto, R. 
Modern Code Reviews-A Survey of Literature and 
Practice. ACM Transactions on Software Engineer-
ing and Methodology, 2023.

22. Tecimer, K.A., Tu¨zu¨n, E., Moran, C., Erdogmus, 
H. Cleaning ground truth data in software task as-
signment. Information and Software Technology. 
2022; 149: 106956.

23. Liao, Z. et al. Core-reviewer recommendation based 
on Pull Request topic model and collaborator social 
network. Soft Computing. 2020; 24: 5683–5693.

24. Bubeck, S. et al. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint 
arXiv:2303.12712, 2023;

25. Richards, T. B. Auto-GPT; https://github.com/
Significant-Gravitas/Auto-GPT

26. Microsoft. JARVIS; https://github.com/microsoft/
JARVIS

27. Park, J.S. et al. Generative Agents: Interactive 
Simulacra of Human Behavior. arXiv preprint 
arXiv:2304.03442,2023.


